

Código do Projeto:	241031
Nome do Projeto:	Desenvolvimento de bancada didática para estudo de motores de combustão interna.
Qtde. de alunos impactados:	2 (envolvidos no projeto); 70 em média por ano beneficiados pela implementação nas disciplinas envolvidas.
Professor Responsável:	Prof. Dr. Pedro Teixeira Lacava
Gerente do Projeto:	Lia Junqueira Pimont

1. Descrição do projeto

Atualmente, o setor de mobilidade enfrenta o desafio de reduzir as emissões de gases de efeito estufa, buscando soluções que viabilizem a descarbonização. Embora a eletrificação tenha sido apontada há cerca de duas décadas como uma alternativa promissora, sua implementação global em larga escala ainda enfrenta desafios significativos, como a evolução lenta da densidade energética das baterias, a dependência de combustíveis fósseis em muitos países, os altos custos dos veículos, problemas no descarte de baterias e a escassez de matérias-primas. Esses fatores limitam sua aplicação ampla e imediata.

Apesar do crescimento dos veículos eletrificados em setores como o automotivo e o aeronáutico, eles representam apenas parte da solução. Nesse cenário, os motores a combustão interna continuam a desempenhar um papel relevante na mobilidade sustentável, especialmente quando projetados para operar com maior eficiência, combustíveis limpos ou verdes, e redução de emissões de poluentes.

Diante desse contexto, é imprescindível que engenheiros envolvidos no setor compreendam as diversas tecnologias em desenvolvimento e estejam preparados para atuar na transição energética. No futuro, espera-se que máquinas térmicas, incluindo motores de combustão interna, sejam reprojetadas para operar de forma mais limpa e sustentável, demandando profissionais capacitados tanto em aspectos técnicos quanto em estratégias para otimização de desempenho.

O tema dos motores a pistão é abordado nas disciplinas PRP 38 - Propulsão Aeronáutica e MMT 05 - Motores a Pistão, oferecidas aos alunos das engenharias Aeronáutica e Mecânica. Nessas disciplinas, existem aulas de laboratório onde os alunos têm contato direto com experimentos relacionados a motores a pistão. O ITA, por exemplo, possui um dos melhores laboratórios de pesquisa em motores a pistão no Brasil. No entanto, as aulas de laboratório seguem um modelo tradicional de ensino, no qual os alunos observam o experimento, recebem os dados e se dedicam à análise e interpretação dos mesmos. Embora a infraestrutura laboratorial seja excelente, ela ainda não proporciona uma abordagem mais ativa, na qual os alunos possam definir estratégias operacionais para o motor, como otimizar a calibração para minimizar a emissão de poluentes, testar diferentes tipos de combustível, ajustar a forma de ignição ou realizar testes de partida a frio, entre outros.

Diante desse contexto, este projeto deu continuidade ao desenvolvimento de uma bancada de testes destinada a motores de pequeno porte, resultando em uma estrutura robusta e confiável. A bancada foi projetada para possibilitar a execução de diferentes estratégias operacionais, elaboradas por alunos de graduação, com total segurança e sem comprometer a integridade do equipamento. Como parte do sistema, foi integrado um motor monocilíndrico Honda GX35 a um dinamômetro, permitindo a aquisição

de dados de rotação, torque, pressão, temperatura e razão de equivalência, viabilizando análises detalhadas e experimentos avançados.

2. Desempenho do Projeto

Legenda:

INSUFICIENTE – Item entregue fora do prazo/valor previsto.

REGULAR – Item entregue no prazo/valor previsto com a necessidade de revisão;

BOM - Item entregue no prazo/valor previsto.

MUITO BOM - Item entregue antes do prazo ou com menor valor previsto.

2.1 - Desempenho em relação aos Marcos e Resultados Esperados — ITEM 3 da Proposta de Projeto:

Entrega	Escala de desempenho		
1. Aquisição de materiais	() INSUFICIENTE () REGULAR () BOM (x) MUITO BOM		
2. Manutenção do dinamômetro	() INSUFICIENTE () REGULAR () BOM (x) MUITO BOM		
3. Montagem motor/escapamento	() INSUFICIENTE () REGULAR () BOM (x) MUITO BOM		
4. Integração motor/dinamômetro	() INSUFICIENTE () REGULAR (x) BOM () MUITO BOM		
5. Instalação do sistema de controle do dinamômetro	() INSUFICIENTE () REGULAR () BOM (x) MUITO BOM		
6. Avaliação experimental da bancada – definição de sua capacidade	() INSUFICIENTE () REGULAR (x) BOM () MUITO BOM		
7. Definição dos procedimentos experimentais para aula	() INSUFICIENTE () REGULAR (x) BOM () MUITO BOM		

2.2 - Desempenho em relação Planejamento Orçamentário – ITEM 8 da Proposta de Projeto:

Entrega	Escala de desempenho	
1.Planejamento dos itens a serem comprados	() INSUFICIENTE () REGULAR () BOM (x) MUITO BOM	
2.Compras	() INSUFICIENTE () REGULAR () BOM (x) MUITO BOM	
3. Planejamento orçamento	() INSUFICIENTE () REGULAR () BOM (x) MUITO BOM	

2.3 - Desempenho em relação ao Planejamento de Atividades (Cronograma) – ITEM 9 da Proposta de Projeto:

Entrega	Escala de desempenho		
1. Aquisição de materiais	() INSUFICIENTE () REGULAR (x) BOM () MUITO BOM		
2. Manutenção do dinamômetro	() INSUFICIENTE () REGULAR () BOM (x) MUITO BOM		
3. Montagem motor/escapamento	() INSUFICIENTE () REGULAR () BOM (x) MUITO BOM		
4. Integração motor/dinamômetro	() INSUFICIENTE () REGULAR (x) BOM () MUITO BOM		
5. Instalação do sistema de controle do dinamômetro	() INSUFICIENTE () REGULAR () BOM (x) MUITO BOM		
6. Avaliação experimental da bancada – definição de sua capacidade	() INSUFICIENTE () REGULAR (x) BOM () MUITO BOM		

7. Definição dos procedimentos experimentais para aula	() INSUFICIENTE () REGULAR (x) BOM () MUITO BOM
--	--

3 - Principais problemas enfrentados:

Problema	Resolução adotada e recomendações futuras	
1. ECU's danificadas (FuelTech)	Embora a manutenção tenha sido executada, ela interferiu no andamento do projeto.	
2. Aquisição da célula de carga	Enfrentamos dificuldades com o fornecedor ao adquirir a célula de carga, o que nos obrigou a utilizar um modelo alternativo ao planejado.	

4 - Lições Aprendidas:

Lições

- 1. Considerar um tempo adicional para possíveis manutenções de equipamentos, garantindo que não haja interrupções inesperadas nas atividades.
- 2. Ampliar os prazos para a aquisição de materiais e avaliar antecipadamente a necessidade de aquisição de itens ao longo do restante do desenvolvimento do projeto.

5 - Assinaturas:

Participantes	Assinatura	Data
Professor Responsável	Known	29/01/2025
Gerente do Projeto	doughireA	28/01/2025

6 - Registros do Projeto (fotos):

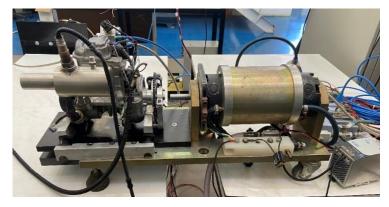


Figura 1 – Integração do motor monocilíndrico Honda GX35 ao dinamômetro.

Figura 2 – Configuração completa da bancada didática de testes para o estudo de motores de combustão interna.

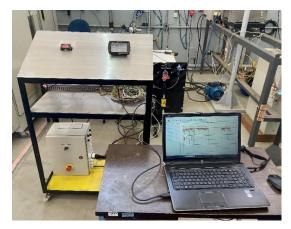


Figura 3 – Sistema de controle da bancada didática.

Figura 4 – Sistema de alimentação de combustível da bancada de testes.

Figura 5 – Sistema de alimentação elétrica da bancada de testes.

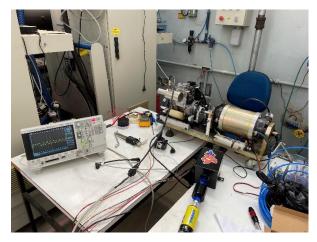


Figura 6 – Processo de calibração da roda fônica utilizando um osciloscópio para assegurar a precisão na medição de sinais.

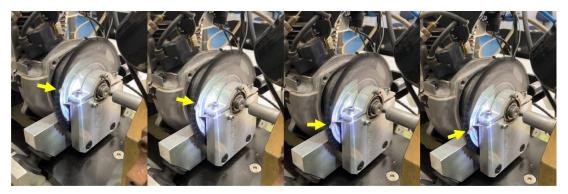


Figura 7 – Sistema de controle de avanço de ignição.

No link informado é possível assistir vídeos da bancada em funcionamento. https://drive.google.com/drive/folders/1-pkrK4_bQM0vErVMjQ4dFt9T576w2N-Z?usp=drive_link